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ABSTRACT 
Finite Element Method (FEM) is pervasively used in most 

of 3D elastostatic numerical simulations, in which Computer 
Aided Design (CAD) models need to be converted into mesh 
models first and then enriched with semantic data (e.g. material 
parameters, boundary conditions). The interaction between 
CAD models and FEM models stated above is very intensive. 
Boundary Element Method (BEM) has been used gradually 
instead of FEM in recent years because of its advantage in 
meshing. BEM can reduce the dimensionality of the problem 
by one so that the complexity in mesh generation can be 
decreased greatly. In this paper, we present a Boundary Element 
parallel computation method for 3D elastostatics. The parallel 
computation runs on Graphics Processing Unit (GPU) using 
Computing Unified Device Architecture (CUDA). Three major 
components are included in such method: (1) BEM theory in 
3D elastostatics and the boundary element coefficient integral 
methods, (2) the parallel BEM algorithm using CUDA, and (3) 
comparison the parallel BEM using CUDA with conventional 
BEM and FEM respectively by examples. The dimension 
reduction characteristics of BEM can dispose the 3D 
elastostatic problem by 2D meshes, therefore we develop a new 
faceting function to make the ACIS facet meshes suitable for 
Boundary Element Analysis (BEA). The examples show that 
the GPU parallel algorithm in this paper can accelerate BEM 
computation about 40 times. 
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1 INTRODUCTION 
Typical product design involves the following steps: 

conceptual design, CAD modeling, meshing and model 
preparation for specific behavior study, finite element analysis, 
result analysis and optimization [1]. Designers need to spend 
much time in the pre-processings such as model transformation, 
model simplification and mesh generation when FEM is   
used [2-3]. Recently, BEM is introduced to deal with structural 
performance analysis, because it adopts Boundary Integral 
Equation (BIE) formulations [4] that reduce the dimensionality 
of the problem by one, which making the mesh generation 
easier. Besides the meshing advantage, BEM has higher 
precision than FEM. Because BEM adopts analytical solutions 
of differential operators and boundary integral in the interior of 
the solution domain, and just adopts numerical computation on 
the boundary, which is different from FEM that uses numerical 
computation in the whole solution domain.  

However, BEM produces dense and nonsymmetric 
matrices and costs more time during computation, which 
decreasing the efficiency of product design. The matrices need 

2( )O N operations to compute the coefficients and 3( )O N  

operations to solve the system by direct solvers or 
2( )O N operations by iterative solvers [5]. (N is the number of 

equations of the linear system or Degrees Of Freedom (DOFs)). 
In order to accelerate BEM computation, parallel computation 
methods have been utilized by several researchers. The first 
BEM parallel computation architecture was described by  
Symm [6], and this work was continued by Davies [7]. Since 
then, several research works have been published [8-10]. But 
there are still several problems such as load equilibrium, data 
transmission and network stability need to be handled urgently 
since these methods are based on Personal Computer (PC) 
cluster. 
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General parallel computations based on GPU made a great 
breakthrough in the last few years, especially since NVIDIA 
released the parallel computing architecture called CUDA in 
2006. Following the breakthrough, GPU parallel computation 
has been used widely in scientific engineering computation. 
Kumar et al [11] presented a parallel implementation of 
expectation maximization for Gaussian mixture models on 
GPUs using CUDA, and the results show that speedup can 
reach 164 times. Takahashi and Hamada [12] implemented a 
GPU-accelerated 3D Helmholtz BEM program for GeForce 
8-series GPUs. The program performed 6–23 times faster than a 
normal BEM program, but the computation of singular integral 
coefficients was still accomplished by CPU.  

In this paper, we completed a GPU parallel BEM algorithm 
in 3D elastostatics using CUDA. In order to simplify the 
pre-processing, the ACIS meshes are applied directly here to 
avoid writing a mesh algorithm and integrating it with CAD 
software. The theory and the algorithm of BEM in 3D 
elastostatics are presented in Sec. 2. Section 3 describes the 
CUDA based parallel computation in processes of coefficient 
integrating and equation solving. Section 4 compares the 
CUDA based parallel BEM with conventional BEM and FEM 
respectively by two examples. Finally, a brief conclusion and 
future work are presented. 

 

2 BEM IN 3D ELASTOSTATICS 
 
2.1 Theory  

Assuming the body forces are zero, the BIE of isotropic 
elastic solids with boundary S can be written as: 
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where a summation is to be carried out over the range of two 
identical subscripts, ( )ju f  and ( )jt f  are the components in j 

direction of displacements and tractions at a point f, ( )ijC e  are 

free-term coefficients, * ( , )iju e f and * ( , )ijt e f are the fundamental 

solution of Kelvin’s problem [13]. 
When the boundary is discretized into N const Triangle 

Elements (TEs), the number of nodes is N, Eqn. (1) can be 
reduced to the following: 
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where 1
( )

2ij ijC e  ( ij is Kronecker delta), ( , )ijh e f  and 

( , )ijg e f  are integral coefficients of ju and jt : 
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Equation (2) has the matrix representation: 
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fu  and ft  are vectors of displacement and traction at point 

f , each vector has 3 components, Hef
and G ef

 are 3 3  

submatrices. 
The integral computations of off-diagonal submatrices’ 

elements of matrix H and matrix G in Eqn. (4) are nonsingular. 
The computations can be obtained by Eqn. (3). By introducing 
a dimensionless oblique coordinate system 1 2( , )   as Fig. 1, 

the integrals about ds can change to the integrals about 1 2d d   

as Eqn. (5), then we can use Hammer numerical quadrature 
method [14] to calculate them. 
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Figure 1.  Oblique coordinate system 
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where J is the Jacobian of the coordinate transformation. 
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The integrals of diagonal submatrices’ elements of matrix 
G in Eqn. (4) are (1/ )O r  singular. By dividing triangle se into 

3 sub-triangles se,1, se,2, se,3 as Fig. 2, a new triangle polar 
coordinate transformation [15] as Fig. 3 can be used to remove 

(1/ )O r  singularity of each subtriangle. The transformation 

formula is present as Eqn. (6). Then Hammer numerical 
quadrature formula being used to compute the integrals of 

sub-triangles ( ,1 ,2 ,3, ,ij ij ij
ee ee eeG G G ), 

3

,
1

ij ij
ee ee k

k

G G


  , but this method 

is ineffective for 2(1/ )O r  singularity.  

 

     
Figure 2.  Triangle subdivision 
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  Figure 3.  Triangle mapped onto an isoceles triangle 

 

                
1 1

1
2 1 1 2

1
                         (6)1

( )
2

t

t

 

   

  



 

 

 
The element integrals of diagonal submatrices of matrix H 

in Eqn. (4) have 2(1/ )O r  singularity. The integrals can be 

computed by rigid body movement method [16] as: 
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When all the elements of matrices are obtained, the BEM 
equations are represented as: 

 
                                                      (8)Ax b  

 
where A is the coefficient matrix which is dense and 
nonsymmetric, x is the unknown vector, b is known 

right-hand-side vector. Solving the Eqn. (8), the boundary 
results ( 1 2 3

1{ , , }N
e e e eru ru ru  , 1 2 3

1{ , , }N
e e e ert rt rt  ) are obtained. 

 
2.2 Computation Steps 

1{ }N
e eS s   is a set of TEs of solid faces, 

1{ }pV v   is a set 

of TEs’ vertices, the BEM computation can be implemented as 

follows:  

 

Input  
1{ }pV v    and their coordinates 1{ , , }px y z     , TEs’ 

vertex number 1 2 1{ , , }N
e e e env nv nv   , and boundary conditions 

1 2 3
1{ , , }N

e e e eu u u  , 1 2 3
1{ , , }N

e e e et t t  . 

Output  boundary results 1 2 3
1{ , , }N

e e e eru ru ru  , 1 2 3
1{ , , }N

e e e ert rt rt  . 

Step 1  compute the coordinates ' ' '
1{ , , }N

e e e ex y z   of all TEs’ 

nodes 1{ }N
e enod  . 

Step 2   compute Jacobians of the coordinate transformation 

1{ }N
e eJ  . 

Step 3   compute the direction cosines 
1{ , , }N

ex ey ez en n n 
 of all 

TEs’ outward normal  
Step 4   for  e = 1  to  N  do 

for  f = 1  to  N  do 
if 

e fnod s then compute ij
efH and ij

efG  ( e f ) 

else divide TE
fs into

,1 ,2 ,3, ,f f fs s s ,compute 

,1 ,2 ,3, ,ij ij ij
ff ff ffG G G , 

3

,
1

ij ij
ff ff k

k

G G


  . 

end 

compute 
1

( 1)
N

ij ij
ee ef ef

f

H H


    

end 
Step 5   arrange elements to form equations Ax=b, solve the 

equations.  
 
    From the steps above, it is easy to find that the 
computations of ij

efH and G ij
ef

( e f ) just need the data of TE e 

and TE f; ij
eeG  just need the data of TE e; ij

eeH  need the values 

of ij
efH  ( e f ). Strong independence exists in the coefficient 

integrals, which is suitable for parallel computation.   
The BEM coefficient matrix is dense and nonsymmetric. 

Iterative solvers are more efficient than direct solvers in large 
scale equations. Krylov subspace methods are effective iterative 
methods for systems of linear equations, the best known Krylov 
subspace methods are generalized minimum residual      
(GMRES), biconjugate gradient stabilized (BiCGSTAB), 
Conjugate gradient, etc. Comparing with other Krylov subspace 
methods, GMRES is more efficient to BEM solution [17]. 
GMRES method is chosen to solve the BEM equations in this 
study. The majority of the solution time is spent on the linear 
algebra computation when using GMRES method. The linear 
algebra computation is very suitable for parallel computation. 
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3 PARALLEL COMPUTATION USING CUDA 
 

3.1 CUDA Computation Flow 
CUDA is a parallel computing architecture developed by 

NVIDIA. CUDA is the computing engine in NVIDIA GPUs 
that is accessible to software developers through variants of 
industry standard programming languages [18]. Under the 
CUDA, a program is completed by both Host port (CPU) and 
Device port (GPU), where Host port is in charge of serial parts, 
and Device port is in charge of parallel parts. The functions 
defined in Device port is called kernel functions. Threads are 
the executable units of GPU. The threads that reside on the 
same processor core structure a thread block. There is a limit to 
the number of threads per thread block, but a kernel can be 
executed by multiple equally-shaped thread blocks. Therefore 
the total number of threads is equal to the number of threads 
per block multiplying the number of blocks. CUDA is 
especially suitable for fine granular data parallel computation 
because of large number of threads. 

The flow of CUDA parallel BEM program in the paper is 
shown in Fig. 4. Host inputs the vertices’ coordinates, vertices’ 
number, etc, and transmits the data to graphics memory. Device 
parallel computes the coefficient integrals and forms the 
equations according to the boundary conditions. Finally, Host 
cooperates with Device to solve equations, and the results are 
obtained. 

 

1{ }pv   1{ , , }px y z    

1 2 1{ , , }N
e e e env nv nv   1{ }MTH th 
1 2 3

1{ , , }N
e e e eu u u 

1 2 3
1{ , , }N

e e e et t t 

1{ }pv   1{ , , }px y z    

1 2 1{ , , }N
e e e env nv nv  

ij
efH ij

efG

1 2 3
1{ , , }N

e e e eu u u 
1 2 3

1{ , , }N
e e e et t t 

AX B

1 2 3
1{ , , }N

e e e eru ru ru 

 
1 2 3

1{ , , }N
e e e ert rt rt 

 
Figure 4.  Flow of CUDA parallel BEM 

 
3.2 Parallel Computations of Coefficients 

In order to keep balance in threads’ loads, there are 3 
kernel functions used to complete all the coefficient 
computations: 

1) Kernel1 computes ij
efH  and ij

efG  ( e f ); 

2) Kernel2 computes ij
eeG , and every TE (se) is divided into 

3 sub-TEs (se,1,se,2,se,3) and needs 3 threads to work; 
3) Kernel3 computes ij

eeH . 

The mapping relationship between coefficient integrals 
and threads is illustrated in Fig. 5 (neglect matrix partition). If 
the BEM matrix scale is too large, it has to be parted. The 
mapping relationship needs to be revised that makes the threads 
match to each block matrix. 

es

1{ }N
e es 

fs

es

es es

 
Figure 5.  Thread mappings of coefficients  

 
The parallel computation steps of coefficient integrals are 

as follows:  
 
M is the total thread number, and M’ is the necessary 

thread number when the computations of matrices H and G can 
be finished parallel. 
 
Input  TEs 

1{ }N
e eS s  , TEs’ vertices 

1{ }pV v    and their 

coordinates 1{ , , }px y z    ,TEs’ vertex number 
1 2 1{ , , }N

e e e env nv nv   , 

thread set 
1{ }MTH th   , boundary conditions 1 2 3

1{ , , }N
e e e eu u u  and 

1 2 3
1{ , , }N

e e e et t t  . 

Output  boundary results 1 2 3
1{ , , }N

e e e eru ru ru  , 1 2 3
1{ , , }N

e e e ert rt rt  . 

Step 1  compute the coordinates ' ' '
1{ , , }N

e e e ex y z   of all TEs’ 

nodes 
1{ }N

e enod  . 

Step 2   compute Jacobians of the coordinate transformation 

1{ }N
e eJ  . 

Step 3   compute the direction cosines 
1{ , , }N

ex ey ez en n n 
 of all 

TEs’ outward normal . 
Step 4  if  MM’  then 

①
1 2 ( 1)N Nth th  compute ,

1, 1{ }ij e N f N
ef e fH  

 
and ,

1, 1{ }ij e N f N
ef e fG  

 
 

( e f ), 

② 1 3Nth th divide 1{ }N
e es  into ,1 ,2 ,3 1{ , , }N

e e e es s s  , compute 

,1 ,2 ,3, ,ij ij ij
ee ee eeG G G , 

3

,
1

ij ij
ee ee k

k

G G


  . 

③ 1 Nth th  compute 1 1
1

{ } {( 1) }
N

ij N ij N
ee e ef ef e

f

H H 


    

else  divide matrices H and G into block matrices, get 
the matrix sets 1{ }L

k kQH qh   and 1{ }L
k kQG qg  , 

the scale is N1 N1 whose elements can be parallel 
finished by M threads.                    
for  k=1  to  L  do   

if  1{ }ij N
k ee eqh H     then 1 1 1N Nth th   

compute Hij
ef kqh  

else 
1 1( 1 1)N Nth th   compute Hij

ef kqh  ( e f ) 
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if 1{G }ij N
k ee eqg      then  

1 1 1N Nth th   compute ij
ef kG qg  

else① 1 1( 1 1)N Nth th  compute ij
ef kG qg ( n m ), 

② 1 3 1Nth th  compute 
,1 ,2 ,3{ , , }ij ij ij

ee ee ee kG G G qg ,   

get { }ij
ee kG qg  

end 

      parallel compute 
1 1

1

{ } {( 1) }
N

ij N ij N
ee e ef ef e

f

H H 


    

 
3.3 Parallel Computations of GMRES 

The GMRES method is an iterative method for the 
numerical solution of a system of linear equations as Ax b . 

The  nth Krylov subspace  for the equations Ax b is 
1{ , , , }n

nK span b Ab A b  . GMRES approximates the exact 

solution by the vector n nx K  that minimizes the norm of the 

residual nb Ax . The vectors 1, , , nb Ab A b  are almost 

linearly dependent, instead of these vectors, the Arnoldi 
iteration is used to find orthonormal vectors 1 2, , , nr r r  which 

form a basis for nK . To accelerate the iterative solution, we 

use the diagonal coefficients of matrix A to form a precondition 
matrix M which can reduce the number of iterations for a given 
tolerance. When the number of iterations increases, the 
requiring storage of the orthonormal vectors increases. In order 
to solve this problem, we restart the GMRES algorithm every m 
steps. The GMRES algorithm flow is described below: 

 
 

Step 1  Start:  

choose 0x  and  m, 

compute 
0 0r b Ax  ,

0|| ||r  ,
1 0 0v r r . 

Step 2  Arnoldi iteration： 

for 1:i m   

      
1

1î iv M Av
   

      for 1:k i   

1ˆ( , )ki i kh v v , 1 1ˆ ˆi i ki kv v h v    
          end 

1, 1ˆ|| ||i i ih v 
, 1 1 1,ˆ /i i i iv v h  

 
end 

Step 3  Form the approximate solution： 

define 
1[ , , ]m mW v v  ，

, 1 1,1{ }m l j l j j mH h        

compute
0m m mx x W y  , 

where 
my  minimizes 

~

1|| ||m me H y  . 

Step 4  Restart： 
       compute 

m mr b Ax  ; if satisfied then stop 

       else compute 
0 mx x , 

1 m mv r r , go to Step 2. 

 
Assuming the number of iterations for an N×N matrix A is 

s, the complexity and the times of linear algebra computations 
are shown in Tab. 1. When the iteration number is a small 
number, the Arnoldi iteration takes the majority time of 
solution. From Tab.1, we can get that most of the time of the 
Arnoldi iteration is spended on matrix-vector multiplication 
(gemv in Tab. 1) which has high parallelism. 
 

Table 1.  Complexity and times of linear algebra computations 

 
In this study, the solution of BEM system equations by 

GMRES method is completed by both Host port and Device 
port under the CUDA. The coefficient matrix A and the vector b 
are generated by Device port, stored in the global memory on 
GPU. Host port controls the flow of the solution. Device port 
parallel completes matrix-vector multiplication and other linear 
algebra computations. 

The matrices generated in the computations can be stored 
in row format or column format. There is no difference between 
the two formats in forming the matrices H and G, because all 
the elements in H and G are independent. However, the formats 
have influence on the linear algebra computations in the 
solution. The column format is adopted in this study. The 
column data of matrices is put into neighbour addresses to 
satisfy the coalesced access principle which requires the 
neighbour threads access neighbour addresses.  CUDA can 
read the data quickly during the process of linear algebra 
computations when the column format is used. 

 

4 EXAMPLE AND ANALYSIS 
 

4.1 Preparation Work 
The 3D elastostatics BEM program codes are executed on  

a desktop computer:  
 

CPU: Intel Core2 Quad CPU Q9550 2.83GHz;  
OS: Windows XP Professional; 
GPU: NVIDIA GeForce GTX 285 1GB; 
RAM: DDR3 SDRAM 2GB; 
COMPILERS: Microsoft Visual Studio 2005，NVIDIA 

CUDA 3.0. 
 
The characteristic advantage of the BEM is the reduction 

in dimensionality of the problem by one, which means that 2D 
meshes can be used for the 3D elastostatics BEA. In this study, 

computation expression complexity times
gemv y=Ax O( 2n ) s+1 
dot a=(x,y) O(n) s(s+1)/2 

nrm2 a=||x|| O(n) s+1 
scal x=ax O(n) s+1 
axpy y=ax+y O(n) s(s+1)/2+2 
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we use the ACIS facet meshes for BEA to avoid writing a 
particular mesh algorithm. 

The 3D ACIS Modeler is a 3D modelling engine owned by 
Spatial Corporation. It is the geometry kernel of AutoCAD, 
Autodesk Inventer, and many other well known CAD 
applications [19]. The Faceter Component is one of the ACIS 
components, which generates and controls approximate 
polygonal representations. The Faceting function of the Faceter 
Component generates approximate polygonal representations 
for the faces of entities while maintaining edge consistency 
between adjacent faces. Face faceting is performed by 
subdividing the face in parameter space with a grid whose 
increments are determined through refinements. The faceted 
representation of a face is also called a mesh [20]. 

Considering TE is used easily and widely, a triangle 
meshing algorithm for BEM based on ACIS meshing is 
proposed in this study. Because the origin ACIS face meshing 
function does not satisfy the BEA requirements, some 
improvements are completed as follows: 

1)  reordering vertex number of each TE as counterclock- 
wise; 

2)  extracting vertices’ coordinates and reordering them 
as BEA need; 

3)  adding element control function which can control 
element size, normal tolerance, and grid mode. 

The ACIS meshing algorithm is implemented by 
developing the 3D CAD software InterSolid whose kernel is 
ACIS, developed by National CAD Support Software 
Engineering Research Center of China. There are 4 parameters 
used to control the meshes as Fig. 6. 
 

 
Figure 6.  Dialog box of ACIS meshing 

 
Where 

M_Grid Line controls the total edge number, default is 
500;  

M_Edge Length controls the max element edge length;  
Normal Tolerance is the angle between the surface 

normals at the two adjacent vertices of a facet element, by 
setting this normal deviation refinement, the user specifies how 

accurately the facets are representing the surface and the quality 
of rendering desired;  

Grid Mode determines whether a grid is used and whether 
the points where the grid cuts the edges should be inserted into 
the edge discretization.  

In order to simplify the pre-processing of BEA, the 
boundary constraint adding function and boundary load adding 
function are developed in InterSolid software, shown in Fig. 7. 

 

 
Figure 7.  Dialog box of constraint and load 

 
The data outputted from InterSolid can be used by BEA 

directly. CAD/CAE integration can be realized well during the 
developed BEM program codes under InterSolid. The flowchart 
of CAD/CAE design analysis is shown in Fig. 8. 

 

 
Figure 8.  Flowchart of CAD/CAE design analysis 
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4.2 Results and Analysis 
Using a link and a fork part as examples, the constraints 

and loads are shown in Fig. 9, Elastic modulus is 200000 Mpa, 
Possion ratio is 0.3, load value is 10Mpa.  

 

 

 
Figure 9.  Constraints and loads of the part 

 
Both BEM and FEM (using software ANSYS10.0) are 

discussed. The initial conditions are listed in Tab. 2. BEM uses 
the const TEs, FEM uses the tetrahedral quadratic elements. 
The face element number of the BEM is much less than the 
volume element number of the FEM when the same element 
size is used. This is because the BEM has dimension reduction 
characteristics that can decrease the unknowns’ scale.  

 
Table 2.  Initial conditions of examples 

Examples BEM 
Element 
number 

BEM 
DOFs 

FEM 
Element 
number 

FEM 
DOFs 

Link  2706 8118 9217 46980 

Fork part 3390 10170 13628 64962 

 
Table 3 lists each part of time consumption when we use 4 

point Hammer integrals and GMRES solver. Table 4 lists the 
speedups corresponding to Tab. 3. Table 5 lists each part of 
time when 7 point Hammer integrals and GMRES solver are 
used. Table 6 lists the speedups corresponding to Tab. 5.  
 

Table 3.  Computation time using 4 point Hammer integrals 

Examples CPU 
Coefficient 
time t1 

CPU 
Solution 
time t2 

GPU 
Coefficient 
time t3 

GPU 
Solution 
time t4 

Link 7.281s 43.992s 0.176s 0.984s 
Fork part 9.046s 71.719s 0.234s 1.813s 

Table 4.  Speedups using 4 point Hammer integrals 

Examples Speedup1 
t1/t3 

Speedup2 
t2/t4 

Speedup3 
(t1+t2)/(t3+t4) 

Link 41.37 44.71 44.20 
Fork part 38.66 39.56 39.46 

 
Table 5.  Computation time using 7 point Hammer integrals 

Examples CPU 
Coefficient
time t1 

CPU 
Solution 
time t2 

GPU 
Coefficient
time t3 

GPU 
Solution 
time t4 

Link 11.466s 45.614s 0.213s 0.990s 
Fork part 14.574s 20.968s 0.296s 0.469s 

 
Table 6.  Speedups using 7 point Hammer integrals 

Examples Speedup1 
t1/t3 

Speedup2 
t2/t4 

Speedup3 
(t1+t2)/(t3+t4)

Link 53.83 46.07 47.45 
Fork part 49.24 44.71 46.46 

 
The results show that the GPU parallel computations are 

much faster than CPU computations in both coefficient 
integrals and GMRES solutions. The speedups can reach about 
40 times.     

Comparing Tab. 3 with Tab. 5, the influence of integral 
accuracy can be obtained. More time is needed in coefficient 
integrals when 7 point integrals is used, but higher accuracy is 
reached that can influence the coefficient value. When the 
coefficients change, the solution time is influenced. The 
solution time using 7 point integrals is a little longer than using 
4 point integrals in the link; but the fork part solution time 
using 7 point integrals is much shorter than using 4 point 
integrals. Several other models are tested in order to explore the 
influence on integral accuracy. It is found that most models 
(especially complicated geometries ) using 7 point integrals are 
faster than those using 4 point integrals in GMRES solutions as 
the fork part, other few models using 7 point integrals are equal 
to or a little slower than that using 4 point integrals. So the high 
accurate integral is recommended to BEM. 

The Gaussian Elimination (GE) method, a direct solution 
method, is compared with GMRES. The GE method solver 
took 576.92s and 1076.27s to solve the link and the fork part. It 
is much slower than GMRES and is not suitable for large scale 
problems despite of its high accuracy. 

Table 7 lists the GMRES solutions between the TEs 
generated by ACIS and the TEs generated by ANSYS where 7 
point integrals are used. It can be seen that the solution using 
TEs generated by ANSYS is faster than that generated by ACIS 
(especially for complicated geometries). Because there is a 
good meshing algorithm in ANSYS to generate better quality 
elements that are more uniform and less sharp triangle 
elements. 

Table 8 lists the computation time between the BEM using 
CUDA (7 point Hammer integrals) and the FEM (ANSYS 
10.0). It shows that the BEM using CUDA is faster than the 
FEM both in coefficient computations and solutions. But when 



 8 Copyright © 2011 by ASME 

the models are very complicated, the conventional BEM 
solution time will increase quickly, more quickly than FEM, the 
BEM using CUDA will be slower than FEM. In order to solve 
this problem, a fast BEM has to be adopted which is not 
discussed in this paper. 
 

Table 7.  Different quality TEs’ influence on solutions 

Examples ACIS 
Element 
number 

ANSYS 
Element 
number 

ACIS 
Solution 
time 

ANSYS 
Solution 
time 

Link 2706 2786 0.990s 0.879s 
Fork part 3390 3410 0.469s 0.248s

 
Table 8.  Computation time of BEM using CUDA and FEM 

Examples FEM 
Coefficient 
time  

FEM 
Solution
time  

BEM 
Coefficient 
time 

BEM 
Solution
time  

Link 4.343s 7.570s 0.213s 0.990s 
Fork part 5.687s 15.907s 0.296s 0.469s 

 
Figure 10 shows the displacement results of the examples 

at X direction, including BEM using CUDA and FEM. The 
displacement distributions of BEM using CUDA and FEM are 
the same. The BEM using CUDA displacement values have 
some errors in the areas where the displacements change 
greatly. This is because the BEM uses const TEs whose 
accuracy is low, especially for large deformation areas, the 
FEM uses quadratic elements whose accuracy is high. A detail 
discussion can be found in literature [21]. When BEM uses 
linear elements or quadratic elements, this problem will be 
solved. 
 

【BEM】【BEM】

【FEM】 【FEM】

X

Y

Z
Not accurate Not accurate

 
Figure 10.  Results of examples 

 

5 CONCLUSIONS AND FUTURE WORK 
In this paper, we set up a 3D elastostatics BEA framework 

which uses ACIS meshing to generate TEs and GPU (under 
CUDA) parallel method to accelerate computation. The 
framework merges the CAE analysis with CAD modeling in 
InterSolid that decreases the pre-processing time substantially. 

The ACIS meshing generates TEs quite fast, because it directly 
acquires the TE information from the triangle facets which was 
used to represent geometric faces in ACIS. Although BEM can 
easily mesh models, its efficiency in solution is so poor that 
GPU parallel method is introduced for fast computation. The 
examples show that the BEM using CUDA in this paper is 
much faster than the conventional counterpart (about 40 times). 

In the future, there are still several problems to be solved 
to improve and complete our work: 

1) The first is to improve the element quality of ACIS 
meshing. The purpose of ACIS meshing is faceted 
representation, accordingly the meshes on surfaces are dense 
and the meshes on the planes are sparse, so that some large 
deformation meshes appear at the intersections between 
surfaces and planes. The quality of ACIS large deformation 
mesh elements is not suitable for BEA. In order to improve the 
quality of TEs, a good triangle mesh optimization algorithm 
based on ACIS is demanded indeed. 

2) Another is to apply linear elements or quadratic 
elements to replace const elements because of the low accuracy 
of const elements. 

3) The third is to apply GPU parallel computation to fast 
BEM such as Fast Multipole BEM, Adaptive Cross 
Approximation BEM, which accelerate the solutions of BEM to 

( )O n . Owing to the matrices produced by BEM are smaller 

than FEM matrices, if the solution computation is ( )O n , the 

BEM does not only require less memory but also computes 
much faster than FEM. When the GPU parallel technology is 
applied to fast BEM, the speed of computation will be 
promoted several times so that large scale problems can be 
solved by PC. 

4) The fourth is to add a model automatic simplification 
function that can simplify the small features of models. The 
simplified models are more easily meshed and produce fewer 
elements, which can accordingly promote the CAE efficiency.  
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ANNEX A 

HAMMER INTEGRAL TABLE 
Point number i Ordinate ( 1

i ) Ordinate ( 2
i ) Ordinate ( 3

i ) Weights( iw ) 

m=4 1 1/3 1/3 1/3 -9/16 
 2 3/5 1/5 1/5 25/48 
 3 1/5 3/5 1/5 25/48 
 4 1/5 1/5 3/5 25/48 
m=7 1 0.33333333 0.33333333 0.33333333 0.22500000 
 2 0.79742699 0.10128651 0.10128651 0.12593918 
 3 0.10128651 0.79742699 0.10128651 0.12593918 
 4 0.10128651 0.10128651 0.79742699 0.12593918 
 5 0.05971587 0.47014206 0.47014206 0.13239415 
 6 0.47014206 0.05971587 0.47014206 0.13239415 
 7 0.47014206 0.47014206 0.05971587 0.13239415 

 
 


