
 1 Copyright © 2011 by ASME

Proceedings of the ASME 2011 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2011
August 29-31, 2011, Washington, DC, USA

DETC2011-47981

BOUNDARY ELEMENT PARALLEL COMPUTATION FOR 3D ELASTOSTATICS
USING CUDA

Yingjun Wang, Qifu Wang*, Gang Wang, Yunbao Huang, Yixiong Wei
National CAD Support Software Engineering Research Center

Huazhong University of Science and Technology
Wuhan, China 430074

ABSTRACT
Finite Element Method (FEM) is pervasively used in most

of 3D elastostatic numerical simulations, in which Computer
Aided Design (CAD) models need to be converted into mesh
models first and then enriched with semantic data (e.g. material
parameters, boundary conditions). The interaction between
CAD models and FEM models stated above is very intensive.
Boundary Element Method (BEM) has been used gradually
instead of FEM in recent years because of its advantage in
meshing. BEM can reduce the dimensionality of the problem
by one so that the complexity in mesh generation can be
decreased greatly. In this paper, we present a Boundary Element
parallel computation method for 3D elastostatics. The parallel
computation runs on Graphics Processing Unit (GPU) using
Computing Unified Device Architecture (CUDA). Three major
components are included in such method: (1) BEM theory in
3D elastostatics and the boundary element coefficient integral
methods, (2) the parallel BEM algorithm using CUDA, and (3)
comparison the parallel BEM using CUDA with conventional
BEM and FEM respectively by examples. The dimension
reduction characteristics of BEM can dispose the 3D
elastostatic problem by 2D meshes, therefore we develop a new
faceting function to make the ACIS facet meshes suitable for
Boundary Element Analysis (BEA). The examples show that
the GPU parallel algorithm in this paper can accelerate BEM
computation about 40 times.

Keywords: parallel computation, BEM, 3D elastostatics,
CUDA, ACIS mesh generation

*Corresponding Author, E-mail: wangqf@hust.edu.cn

1 INTRODUCTION
Typical product design involves the following steps:

conceptual design, CAD modeling, meshing and model
preparation for specific behavior study, finite element analysis,
result analysis and optimization [1]. Designers need to spend
much time in the pre-processings such as model transformation,
model simplification and mesh generation when FEM is
used [2-3]. Recently, BEM is introduced to deal with structural
performance analysis, because it adopts Boundary Integral
Equation (BIE) formulations [4] that reduce the dimensionality
of the problem by one, which making the mesh generation
easier. Besides the meshing advantage, BEM has higher
precision than FEM. Because BEM adopts analytical solutions
of differential operators and boundary integral in the interior of
the solution domain, and just adopts numerical computation on
the boundary, which is different from FEM that uses numerical
computation in the whole solution domain.

However, BEM produces dense and nonsymmetric
matrices and costs more time during computation, which
decreasing the efficiency of product design. The matrices need

2()O N operations to compute the coefficients and 3()O N

operations to solve the system by direct solvers or
2()O N operations by iterative solvers [5]. (N is the number of

equations of the linear system or Degrees Of Freedom (DOFs)).
In order to accelerate BEM computation, parallel computation
methods have been utilized by several researchers. The first
BEM parallel computation architecture was described by
Symm [6], and this work was continued by Davies [7]. Since
then, several research works have been published [8-10]. But
there are still several problems such as load equilibrium, data
transmission and network stability need to be handled urgently
since these methods are based on Personal Computer (PC)
cluster.

 2 Copyright © 2011 by ASME

General parallel computations based on GPU made a great
breakthrough in the last few years, especially since NVIDIA
released the parallel computing architecture called CUDA in
2006. Following the breakthrough, GPU parallel computation
has been used widely in scientific engineering computation.
Kumar et al [11] presented a parallel implementation of
expectation maximization for Gaussian mixture models on
GPUs using CUDA, and the results show that speedup can
reach 164 times. Takahashi and Hamada [12] implemented a
GPU-accelerated 3D Helmholtz BEM program for GeForce
8-series GPUs. The program performed 6–23 times faster than a
normal BEM program, but the computation of singular integral
coefficients was still accomplished by CPU.

In this paper, we completed a GPU parallel BEM algorithm
in 3D elastostatics using CUDA. In order to simplify the
pre-processing, the ACIS meshes are applied directly here to
avoid writing a mesh algorithm and integrating it with CAD
software. The theory and the algorithm of BEM in 3D
elastostatics are presented in Sec. 2. Section 3 describes the
CUDA based parallel computation in processes of coefficient
integrating and equation solving. Section 4 compares the
CUDA based parallel BEM with conventional BEM and FEM
respectively by two examples. Finally, a brief conclusion and
future work are presented.

2 BEM IN 3D ELASTOSTATICS

2.1 Theory

Assuming the body forces are zero, the BIE of isotropic
elastic solids with boundary S can be written as:

*

*

() () (,) ()

 (,) () , 1, 2, 3 (1)

ij j ij js

ij js

C e u e t e f u f ds

u e f t f ds i j

 






where a summation is to be carried out over the range of two
identical subscripts, ()ju f and ()jt f are the components in j

direction of displacements and tractions at a point f, ()ijC e are

free-term coefficients, * (,)iju e f and * (,)ijt e f are the fundamental

solution of Kelvin’s problem [13].
When the boundary is discretized into N const Triangle

Elements (TEs), the number of nodes is N, Eqn. (1) can be
reduced to the following:

*

1

*

1

() () (,) ()

 (,) ()

 , 1, 2, 3; , 1, 2, (2)

f

f

N

ij j ij jS
f

N

ij jS
f

C e u e t e f u f ds

u e f t f ds

i j e f N





 

 

 

 


where 1
()

2ij ijC e  (ij is Kronecker delta), (,)ijh e f and

(,)ijg e f are integral coefficients of ju and jt :

 *(,) (,)
f

ij ijS
h e f t e f ds 

 *(,) (,) (3)
f

ij ijS
g e f u e f ds 

Equation (2) has the matrix representation:

        ef f ef f1 N 1 NN N N N
H u G t (4)

  


where

 3 3 3 3

T T1 2 3 1 2 3

H , G

u , t

ij ij
ef ef ef ef

f f f f f f f f

H G

u u u t t t

 
       

       

1
(,)

2
ij
ef i j e f ijH h e f   , (,)ij

ef ijG g e f

fu and ft are vectors of displacement and traction at point

f , each vector has 3 components, Hef
and G ef

 are 3 3

submatrices.
The integral computations of off-diagonal submatrices’

elements of matrix H and matrix G in Eqn. (4) are nonsingular.
The computations can be obtained by Eqn. (3). By introducing
a dimensionless oblique coordinate system 1 2(,)  as Fig. 1,

the integrals about ds can change to the integrals about 1 2d d 

as Eqn. (5), then we can use Hammer numerical quadrature
method [14] to calculate them.

1


2


Figure 1. Oblique coordinate system

2

*

1 1 *
1 2 1 20 0

(,) (,)

 (,) (,)

f

ij
ef ij ijS

ij

H h e f t e f ds

t e f J d d


   


 





 

2

*

1 1 *
1 2 1 20 0

(,) (,)

 (,) (,) (5)

f

ij
ef ij ijS

ij

G g e f u e f ds

u e f J d d


   


 





 

where J is the Jacobian of the coordinate transformation.

 3 Copyright © 2011 by ASME

The integrals of diagonal submatrices’ elements of matrix
G in Eqn. (4) are (1/)O r singular. By dividing triangle se into

3 sub-triangles se,1, se,2, se,3 as Fig. 2, a new triangle polar
coordinate transformation [15] as Fig. 3 can be used to remove

(1/)O r singularity of each subtriangle. The transformation

formula is present as Eqn. (6). Then Hammer numerical
quadrature formula being used to compute the integrals of

sub-triangles (,1 ,2 ,3, ,ij ij ij
ee ee eeG G G),

3

,
1

ij ij
ee ee k

k

G G


  , but this method

is ineffective for 2(1/)O r singularity.

Figure 2. Triangle subdivision

1

2

 Figure 3. Triangle mapped onto an isoceles triangle

1 1

1
2 1 1 2

1
 (6)1

()
2

t

t

 

   

  



 

The element integrals of diagonal submatrices of matrix H

in Eqn. (4) have 2(1/)O r singularity. The integrals can be

computed by rigid body movement method [16] as:

1

(1) (7)
N

ij ij
ee ef ef

f

H H


  

When all the elements of matrices are obtained, the BEM
equations are represented as:

 (8)Ax b

where A is the coefficient matrix which is dense and
nonsymmetric, x is the unknown vector, b is known

right-hand-side vector. Solving the Eqn. (8), the boundary
results (1 2 3

1{ , , }N
e e e eru ru ru  , 1 2 3

1{ , , }N
e e e ert rt rt ) are obtained.

2.2 Computation Steps

1{ }N
e eS s  is a set of TEs of solid faces,

1{ }pV v   is a set

of TEs’ vertices, the BEM computation can be implemented as

follows:

Input
1{ }pV v   and their coordinates 1{ , , }px y z     , TEs’

vertex number 1 2 1{ , , }N
e e e env nv nv   , and boundary conditions

1 2 3
1{ , , }N

e e e eu u u  , 1 2 3
1{ , , }N

e e e et t t  .

Output boundary results 1 2 3
1{ , , }N

e e e eru ru ru  , 1 2 3
1{ , , }N

e e e ert rt rt  .

Step 1 compute the coordinates ' ' '
1{ , , }N

e e e ex y z  of all TEs’

nodes 1{ }N
e enod  .

Step 2 compute Jacobians of the coordinate transformation

1{ }N
e eJ  .

Step 3 compute the direction cosines
1{ , , }N

ex ey ez en n n 
 of all

TEs’ outward normal
Step 4 for e = 1 to N do

for f = 1 to N do
if

e fnod s then compute ij
efH and ij

efG (e f)

else divide TE
fs into

,1 ,2 ,3, ,f f fs s s ,compute

,1 ,2 ,3, ,ij ij ij
ff ff ffG G G ,

3

,
1

ij ij
ff ff k

k

G G


  .

end

compute
1

(1)
N

ij ij
ee ef ef

f

H H


  

end
Step 5 arrange elements to form equations Ax=b, solve the

equations.

 From the steps above, it is easy to find that the
computations of ij

efH and G ij
ef

(e f) just need the data of TE e

and TE f; ij
eeG just need the data of TE e; ij

eeH need the values

of ij
efH (e f). Strong independence exists in the coefficient

integrals, which is suitable for parallel computation.
The BEM coefficient matrix is dense and nonsymmetric.

Iterative solvers are more efficient than direct solvers in large
scale equations. Krylov subspace methods are effective iterative
methods for systems of linear equations, the best known Krylov
subspace methods are generalized minimum residual
(GMRES), biconjugate gradient stabilized (BiCGSTAB),
Conjugate gradient, etc. Comparing with other Krylov subspace
methods, GMRES is more efficient to BEM solution [17].
GMRES method is chosen to solve the BEM equations in this
study. The majority of the solution time is spent on the linear
algebra computation when using GMRES method. The linear
algebra computation is very suitable for parallel computation.

 4 Copyright © 2011 by ASME

3 PARALLEL COMPUTATION USING CUDA

3.1 CUDA Computation Flow
CUDA is a parallel computing architecture developed by

NVIDIA. CUDA is the computing engine in NVIDIA GPUs
that is accessible to software developers through variants of
industry standard programming languages [18]. Under the
CUDA, a program is completed by both Host port (CPU) and
Device port (GPU), where Host port is in charge of serial parts,
and Device port is in charge of parallel parts. The functions
defined in Device port is called kernel functions. Threads are
the executable units of GPU. The threads that reside on the
same processor core structure a thread block. There is a limit to
the number of threads per thread block, but a kernel can be
executed by multiple equally-shaped thread blocks. Therefore
the total number of threads is equal to the number of threads
per block multiplying the number of blocks. CUDA is
especially suitable for fine granular data parallel computation
because of large number of threads.

The flow of CUDA parallel BEM program in the paper is
shown in Fig. 4. Host inputs the vertices’ coordinates, vertices’
number, etc, and transmits the data to graphics memory. Device
parallel computes the coefficient integrals and forms the
equations according to the boundary conditions. Finally, Host
cooperates with Device to solve equations, and the results are
obtained.

1{ }pv   1{ , , }px y z    

1 2 1{ , , }N
e e e env nv nv   1{ }MTH th 
1 2 3

1{ , , }N
e e e eu u u 

1 2 3
1{ , , }N

e e e et t t 

1{ }pv   1{ , , }px y z    

1 2 1{ , , }N
e e e env nv nv  

ij
efH ij

efG

1 2 3
1{ , , }N

e e e eu u u 
1 2 3

1{ , , }N
e e e et t t 

AX B

1 2 3
1{ , , }N

e e e eru ru ru 

1 2 3

1{ , , }N
e e e ert rt rt 

Figure 4. Flow of CUDA parallel BEM

3.2 Parallel Computations of Coefficients

In order to keep balance in threads’ loads, there are 3
kernel functions used to complete all the coefficient
computations:

1) Kernel1 computes ij
efH and ij

efG (e f);

2) Kernel2 computes ij
eeG , and every TE (se) is divided into

3 sub-TEs (se,1,se,2,se,3) and needs 3 threads to work;
3) Kernel3 computes ij

eeH .

The mapping relationship between coefficient integrals
and threads is illustrated in Fig. 5 (neglect matrix partition). If
the BEM matrix scale is too large, it has to be parted. The
mapping relationship needs to be revised that makes the threads
match to each block matrix.

es

1{ }N
e es 

fs

es

es es

Figure 5. Thread mappings of coefficients

The parallel computation steps of coefficient integrals are

as follows:

M is the total thread number, and M’ is the necessary

thread number when the computations of matrices H and G can
be finished parallel.

Input TEs

1{ }N
e eS s  , TEs’ vertices

1{ }pV v   and their

coordinates 1{ , , }px y z    ,TEs’ vertex number
1 2 1{ , , }N

e e e env nv nv   ,

thread set
1{ }MTH th   , boundary conditions 1 2 3

1{ , , }N
e e e eu u u  and

1 2 3
1{ , , }N

e e e et t t  .

Output boundary results 1 2 3
1{ , , }N

e e e eru ru ru  , 1 2 3
1{ , , }N

e e e ert rt rt  .

Step 1 compute the coordinates ' ' '
1{ , , }N

e e e ex y z  of all TEs’

nodes
1{ }N

e enod  .

Step 2 compute Jacobians of the coordinate transformation

1{ }N
e eJ  .

Step 3 compute the direction cosines
1{ , , }N

ex ey ez en n n 
 of all

TEs’ outward normal .
Step 4 if MM’ then

①
1 2 (1)N Nth th  compute ,

1, 1{ }ij e N f N
ef e fH  

 
and ,

1, 1{ }ij e N f N
ef e fG  

 

(e f),

② 1 3Nth th divide 1{ }N
e es  into ,1 ,2 ,3 1{ , , }N

e e e es s s  , compute

,1 ,2 ,3, ,ij ij ij
ee ee eeG G G ,

3

,
1

ij ij
ee ee k

k

G G


  .

③ 1 Nth th compute 1 1
1

{ } {(1) }
N

ij N ij N
ee e ef ef e

f

H H 


  

else divide matrices H and G into block matrices, get
the matrix sets 1{ }L

k kQH qh  and 1{ }L
k kQG qg  ,

the scale is N1 N1 whose elements can be parallel
finished by M threads.
for k=1 to L do

if 1{ }ij N
k ee eqh H    then 1 1 1N Nth th 

compute Hij
ef kqh

else
1 1(1 1)N Nth th  compute Hij

ef kqh (e f)

 5 Copyright © 2011 by ASME

if 1{G }ij N
k ee eqg    then

1 1 1N Nth th  compute ij
ef kG qg

else① 1 1(1 1)N Nth th  compute ij
ef kG qg (n m),

② 1 3 1Nth th compute
,1 ,2 ,3{ , , }ij ij ij

ee ee ee kG G G qg ,

get { }ij
ee kG qg

end

 parallel compute
1 1

1

{ } {(1) }
N

ij N ij N
ee e ef ef e

f

H H 


  

3.3 Parallel Computations of GMRES

The GMRES method is an iterative method for the
numerical solution of a system of linear equations as Ax b .

The nth Krylov subspace for the equations Ax b is
1{ , , , }n

nK span b Ab A b  . GMRES approximates the exact

solution by the vector n nx K that minimizes the norm of the

residual nb Ax . The vectors 1, , , nb Ab A b are almost

linearly dependent, instead of these vectors, the Arnoldi
iteration is used to find orthonormal vectors 1 2, , , nr r r which

form a basis for nK . To accelerate the iterative solution, we

use the diagonal coefficients of matrix A to form a precondition
matrix M which can reduce the number of iterations for a given
tolerance. When the number of iterations increases, the
requiring storage of the orthonormal vectors increases. In order
to solve this problem, we restart the GMRES algorithm every m
steps. The GMRES algorithm flow is described below:

Step 1 Start:

choose 0x and m,

compute
0 0r b Ax  ,

0|| ||r  ,
1 0 0v r r .

Step 2 Arnoldi iteration：

for 1:i m

1

1î iv M Av
 

 for 1:k i

1ˆ(,)ki i kh v v , 1 1ˆ ˆi i ki kv v h v  
 end

1, 1ˆ|| ||i i ih v 
, 1 1 1,ˆ /i i i iv v h  

end

Step 3 Form the approximate solution：

define
1[, ,]m mW v v  ，

, 1 1,1{ }m l j l j j mH h     

compute
0m m mx x W y  ,

where
my minimizes

~

1|| ||m me H y  .

Step 4 Restart：
 compute

m mr b Ax  ; if satisfied then stop

 else compute
0 mx x ,

1 m mv r r , go to Step 2.

Assuming the number of iterations for an N×N matrix A is

s, the complexity and the times of linear algebra computations
are shown in Tab. 1. When the iteration number is a small
number, the Arnoldi iteration takes the majority time of
solution. From Tab.1, we can get that most of the time of the
Arnoldi iteration is spended on matrix-vector multiplication
(gemv in Tab. 1) which has high parallelism.

Table 1. Complexity and times of linear algebra computations

In this study, the solution of BEM system equations by

GMRES method is completed by both Host port and Device
port under the CUDA. The coefficient matrix A and the vector b
are generated by Device port, stored in the global memory on
GPU. Host port controls the flow of the solution. Device port
parallel completes matrix-vector multiplication and other linear
algebra computations.

The matrices generated in the computations can be stored
in row format or column format. There is no difference between
the two formats in forming the matrices H and G, because all
the elements in H and G are independent. However, the formats
have influence on the linear algebra computations in the
solution. The column format is adopted in this study. The
column data of matrices is put into neighbour addresses to
satisfy the coalesced access principle which requires the
neighbour threads access neighbour addresses. CUDA can
read the data quickly during the process of linear algebra
computations when the column format is used.

4 EXAMPLE AND ANALYSIS

4.1 Preparation Work
The 3D elastostatics BEM program codes are executed on

a desktop computer:

CPU: Intel Core2 Quad CPU Q9550 2.83GHz;
OS: Windows XP Professional;
GPU: NVIDIA GeForce GTX 285 1GB;
RAM: DDR3 SDRAM 2GB;
COMPILERS: Microsoft Visual Studio 2005，NVIDIA

CUDA 3.0.

The characteristic advantage of the BEM is the reduction

in dimensionality of the problem by one, which means that 2D
meshes can be used for the 3D elastostatics BEA. In this study,

computation expression complexity times
gemv y=Ax O(2n) s+1
dot a=(x,y) O(n) s(s+1)/2

nrm2 a=||x|| O(n) s+1
scal x=ax O(n) s+1
axpy y=ax+y O(n) s(s+1)/2+2

 6 Copyright © 2011 by ASME

we use the ACIS facet meshes for BEA to avoid writing a
particular mesh algorithm.

The 3D ACIS Modeler is a 3D modelling engine owned by
Spatial Corporation. It is the geometry kernel of AutoCAD,
Autodesk Inventer, and many other well known CAD
applications [19]. The Faceter Component is one of the ACIS
components, which generates and controls approximate
polygonal representations. The Faceting function of the Faceter
Component generates approximate polygonal representations
for the faces of entities while maintaining edge consistency
between adjacent faces. Face faceting is performed by
subdividing the face in parameter space with a grid whose
increments are determined through refinements. The faceted
representation of a face is also called a mesh [20].

Considering TE is used easily and widely, a triangle
meshing algorithm for BEM based on ACIS meshing is
proposed in this study. Because the origin ACIS face meshing
function does not satisfy the BEA requirements, some
improvements are completed as follows:

1) reordering vertex number of each TE as counterclock-
wise;

2) extracting vertices’ coordinates and reordering them
as BEA need;

3) adding element control function which can control
element size, normal tolerance, and grid mode.

The ACIS meshing algorithm is implemented by
developing the 3D CAD software InterSolid whose kernel is
ACIS, developed by National CAD Support Software
Engineering Research Center of China. There are 4 parameters
used to control the meshes as Fig. 6.

Figure 6. Dialog box of ACIS meshing

Where

M_Grid Line controls the total edge number, default is
500;

M_Edge Length controls the max element edge length;
Normal Tolerance is the angle between the surface

normals at the two adjacent vertices of a facet element, by
setting this normal deviation refinement, the user specifies how

accurately the facets are representing the surface and the quality
of rendering desired;

Grid Mode determines whether a grid is used and whether
the points where the grid cuts the edges should be inserted into
the edge discretization.

In order to simplify the pre-processing of BEA, the
boundary constraint adding function and boundary load adding
function are developed in InterSolid software, shown in Fig. 7.

Figure 7. Dialog box of constraint and load

The data outputted from InterSolid can be used by BEA

directly. CAD/CAE integration can be realized well during the
developed BEM program codes under InterSolid. The flowchart
of CAD/CAE design analysis is shown in Fig. 8.

Figure 8. Flowchart of CAD/CAE design analysis

 7 Copyright © 2011 by ASME

4.2 Results and Analysis
Using a link and a fork part as examples, the constraints

and loads are shown in Fig. 9, Elastic modulus is 200000 Mpa,
Possion ratio is 0.3, load value is 10Mpa.

Figure 9. Constraints and loads of the part

Both BEM and FEM (using software ANSYS10.0) are

discussed. The initial conditions are listed in Tab. 2. BEM uses
the const TEs, FEM uses the tetrahedral quadratic elements.
The face element number of the BEM is much less than the
volume element number of the FEM when the same element
size is used. This is because the BEM has dimension reduction
characteristics that can decrease the unknowns’ scale.

Table 2. Initial conditions of examples

Examples BEM
Element
number

BEM
DOFs

FEM
Element
number

FEM
DOFs

Link 2706 8118 9217 46980

Fork part 3390 10170 13628 64962

Table 3 lists each part of time consumption when we use 4

point Hammer integrals and GMRES solver. Table 4 lists the
speedups corresponding to Tab. 3. Table 5 lists each part of
time when 7 point Hammer integrals and GMRES solver are
used. Table 6 lists the speedups corresponding to Tab. 5.

Table 3. Computation time using 4 point Hammer integrals

Examples CPU
Coefficient
time t1

CPU
Solution
time t2

GPU
Coefficient
time t3

GPU
Solution
time t4

Link 7.281s 43.992s 0.176s 0.984s
Fork part 9.046s 71.719s 0.234s 1.813s

Table 4. Speedups using 4 point Hammer integrals

Examples Speedup1
t1/t3

Speedup2
t2/t4

Speedup3
(t1+t2)/(t3+t4)

Link 41.37 44.71 44.20
Fork part 38.66 39.56 39.46

Table 5. Computation time using 7 point Hammer integrals

Examples CPU
Coefficient
time t1

CPU
Solution
time t2

GPU
Coefficient
time t3

GPU
Solution
time t4

Link 11.466s 45.614s 0.213s 0.990s
Fork part 14.574s 20.968s 0.296s 0.469s

Table 6. Speedups using 7 point Hammer integrals

Examples Speedup1
t1/t3

Speedup2
t2/t4

Speedup3
(t1+t2)/(t3+t4)

Link 53.83 46.07 47.45
Fork part 49.24 44.71 46.46

The results show that the GPU parallel computations are

much faster than CPU computations in both coefficient
integrals and GMRES solutions. The speedups can reach about
40 times.

Comparing Tab. 3 with Tab. 5, the influence of integral
accuracy can be obtained. More time is needed in coefficient
integrals when 7 point integrals is used, but higher accuracy is
reached that can influence the coefficient value. When the
coefficients change, the solution time is influenced. The
solution time using 7 point integrals is a little longer than using
4 point integrals in the link; but the fork part solution time
using 7 point integrals is much shorter than using 4 point
integrals. Several other models are tested in order to explore the
influence on integral accuracy. It is found that most models
(especially complicated geometries) using 7 point integrals are
faster than those using 4 point integrals in GMRES solutions as
the fork part, other few models using 7 point integrals are equal
to or a little slower than that using 4 point integrals. So the high
accurate integral is recommended to BEM.

The Gaussian Elimination (GE) method, a direct solution
method, is compared with GMRES. The GE method solver
took 576.92s and 1076.27s to solve the link and the fork part. It
is much slower than GMRES and is not suitable for large scale
problems despite of its high accuracy.

Table 7 lists the GMRES solutions between the TEs
generated by ACIS and the TEs generated by ANSYS where 7
point integrals are used. It can be seen that the solution using
TEs generated by ANSYS is faster than that generated by ACIS
(especially for complicated geometries). Because there is a
good meshing algorithm in ANSYS to generate better quality
elements that are more uniform and less sharp triangle
elements.

Table 8 lists the computation time between the BEM using
CUDA (7 point Hammer integrals) and the FEM (ANSYS
10.0). It shows that the BEM using CUDA is faster than the
FEM both in coefficient computations and solutions. But when

 8 Copyright © 2011 by ASME

the models are very complicated, the conventional BEM
solution time will increase quickly, more quickly than FEM, the
BEM using CUDA will be slower than FEM. In order to solve
this problem, a fast BEM has to be adopted which is not
discussed in this paper.

Table 7. Different quality TEs’ influence on solutions

Examples ACIS
Element
number

ANSYS
Element
number

ACIS
Solution
time

ANSYS
Solution
time

Link 2706 2786 0.990s 0.879s
Fork part 3390 3410 0.469s 0.248s

Table 8. Computation time of BEM using CUDA and FEM

Examples FEM
Coefficient
time

FEM
Solution
time

BEM
Coefficient
time

BEM
Solution
time

Link 4.343s 7.570s 0.213s 0.990s
Fork part 5.687s 15.907s 0.296s 0.469s

Figure 10 shows the displacement results of the examples

at X direction, including BEM using CUDA and FEM. The
displacement distributions of BEM using CUDA and FEM are
the same. The BEM using CUDA displacement values have
some errors in the areas where the displacements change
greatly. This is because the BEM uses const TEs whose
accuracy is low, especially for large deformation areas, the
FEM uses quadratic elements whose accuracy is high. A detail
discussion can be found in literature [21]. When BEM uses
linear elements or quadratic elements, this problem will be
solved.

【BEM】【BEM】

【FEM】 【FEM】

X

Y

Z
Not accurate Not accurate

Figure 10. Results of examples

5 CONCLUSIONS AND FUTURE WORK
In this paper, we set up a 3D elastostatics BEA framework

which uses ACIS meshing to generate TEs and GPU (under
CUDA) parallel method to accelerate computation. The
framework merges the CAE analysis with CAD modeling in
InterSolid that decreases the pre-processing time substantially.

The ACIS meshing generates TEs quite fast, because it directly
acquires the TE information from the triangle facets which was
used to represent geometric faces in ACIS. Although BEM can
easily mesh models, its efficiency in solution is so poor that
GPU parallel method is introduced for fast computation. The
examples show that the BEM using CUDA in this paper is
much faster than the conventional counterpart (about 40 times).

In the future, there are still several problems to be solved
to improve and complete our work:

1) The first is to improve the element quality of ACIS
meshing. The purpose of ACIS meshing is faceted
representation, accordingly the meshes on surfaces are dense
and the meshes on the planes are sparse, so that some large
deformation meshes appear at the intersections between
surfaces and planes. The quality of ACIS large deformation
mesh elements is not suitable for BEA. In order to improve the
quality of TEs, a good triangle mesh optimization algorithm
based on ACIS is demanded indeed.

2) Another is to apply linear elements or quadratic
elements to replace const elements because of the low accuracy
of const elements.

3) The third is to apply GPU parallel computation to fast
BEM such as Fast Multipole BEM, Adaptive Cross
Approximation BEM, which accelerate the solutions of BEM to

()O n . Owing to the matrices produced by BEM are smaller

than FEM matrices, if the solution computation is ()O n , the

BEM does not only require less memory but also computes
much faster than FEM. When the GPU parallel technology is
applied to fast BEM, the speed of computation will be
promoted several times so that large scale problems can be
solved by PC.

4) The fourth is to add a model automatic simplification
function that can simplify the small features of models. The
simplified models are more easily meshed and produce fewer
elements, which can accordingly promote the CAE efficiency.

ACKNOWLEDGMENTS
This research has been supported by the National Natural

Science Foundation of China (50975107 and 60804050).

REFERENCES
[1] Lou, R., et al, 2009. “Towards CAD-less finite element

analysis using group boundaries for enriched meshes
manipulation”. ASME International Design Engineering
Technical Conference, San Diego, California,
DETC2009-86575.

[2] Raphael, B. and Krishnamoorthy, C., 1993. “Automating
finite element development using object oriented
techniques”. Engineering Computations, 10(3), pp.
267-278.

[3] Park, H.S. and Dang, X.P., 2010. “Structural optimization
based on CAD-CAE integration and metamodeling
techniques”. Computer-Aided Design, 42(10), pp.
889-902.

[4] Brebbia, C., Telles, J. and Wrobel, L.,1984. Boundary

 9 Copyright © 2011 by ASME

element techniques: theory and applications in engineer-
ing. Springer-Verlag, Berlin.

[5] Liu, Y., 2009. Fast multipole boundary element method :
theory and applications in engineering. Cambridge
University Press, New York,Chap.3, pp.47-48.

[6] Symm, G., 1984. “Boundary elements on a distributed
array processor”. Engineering Analysis, 1(3), pp. 162-165.

[7] Davies, A., 1988. “The boundary element method on the
ICL DAP”. Parallel Computing, 8(1-3), pp. 335-343.

[8] Davies, A., 1996. “Parallel implementations of the
boundary element method”. Computers and Mathematics
with Applications, 31(6), pp. 33-40.

[9] Cunha, M., Telles J., and Coutinho, A.,2004. “A portable
parallel implementation of a boundary element elastostatic
code for shared and distributed memory systems”.
Advances in Engineering Software, 35(7), pp. 453-460.

[10] Araujo, F.C., d'Azevedo, E.F, and Gray,L.J., 2010.
“Boundary-element parallel-computing algorithm for the
microstructural analysis of general composites”.
Computers and Structures, 88(11-12), pp. 773-784.

[11] Kumar, N., Satoor, S. and Buck, I.2009. “Fast Parallel
Expectation Maximization for Gaussian Mixture Models
on GPUs Using CUDA”. 11th IEEE International
Conference on High Performance Computing and
Communications, pp.103-109.

[12] Takahashi, T. and Hamada, T. 2009. “GPU-accelerated
boundary element method for Helmholtz'equation in three
dimensions”. International Journal for Numerical
Methods in Engineering, 80(10), pp. 1295-1321.

[13] Cruse, T., 1969. “Numerical solutions in three dimensional
elastostatics”. International Journal of Solids and
Structures, 5(12), pp. 1259-1274.

[14] Dunavant, D., 1985. “High degree efficient symmetrical
Gaussian quadrature rules for the triangle”. International
Journal for Numerical Methods in Engineering, 21(6), pp.
1129-1148.

[15] Hu, S., Chen, G. 1997. “A new triangle polar coordinate
transformation”. Chinese Journal of Computational
Mechanics, 14(3), pp.1129– 1148. (in Chinese)

[16] Gao, X. and Davies,T., 2002. Boundary element
programming in mechanics. Cambridge University Press,
New York,Chap.4, pp.51-52.

[17] Xiao, H. and Chen, Z., 2007. “Numerical experiments of
preconditioned Krylov subspace methods solving the
dense non-symmetric systems arising from BEM”.
Engineering Analysis with Boundary Elements, 31(12), pp.
1013-1023.

[18] NVIDIA Corporation, 2010. NVIDIA CUDA
programming guide, Version 3.0.

[19] Kaufmann, H., 2009. “Dynamic Differential Geometry in
Education”. Journal for Geometry and Graphics, 13(2),
pp. 131-144.

[20] Spatial Corporation, 2004. ACIS R15 Online Help.
[21] Lei, T., Yao, Z., and Wang, H., 2007. “High performance

parallel computations of 3-D fast multipole boundary
element method”. Journal of Tsinghua University (Science
and Technology), 47(2), pp. 280-283. (in Chinese)

ANNEX A

HAMMER INTEGRAL TABLE
Point number i Ordinate (1

i) Ordinate (2
i) Ordinate (3

i) Weights(iw)

m=4 1 1/3 1/3 1/3 -9/16
 2 3/5 1/5 1/5 25/48
 3 1/5 3/5 1/5 25/48
 4 1/5 1/5 3/5 25/48
m=7 1 0.33333333 0.33333333 0.33333333 0.22500000
 2 0.79742699 0.10128651 0.10128651 0.12593918
 3 0.10128651 0.79742699 0.10128651 0.12593918
 4 0.10128651 0.10128651 0.79742699 0.12593918
 5 0.05971587 0.47014206 0.47014206 0.13239415
 6 0.47014206 0.05971587 0.47014206 0.13239415
 7 0.47014206 0.47014206 0.05971587 0.13239415

